Flexible Programming of Hierarchical Modeling Algorithms and Compilation of R Using NIMBLE

Christopher Paciorek UC Berkeley Statistics

Joint work with:
Perry de Valpine (PI) UC Berkeley Environmental Science, Policy and Managem’t
Daniel Turek Williams College Math and Statistics
Nick Michaud UC Berkeley ESPM and Statistics
Duncan Temple Lang UC Davis Statistics

Bayesian nonparametrics development with:
Claudia Wehrhahn Cortes UC Santa Cruz Applied Math and Statistics
Abel Rodriguez UC Santa Cruz Applied Math and Statistics

http://r-nimble.org

October 2017

Funded by NSF DBI-1147230, ACI-1550488, DMS-1622444; Google Summer of Code 2015, 2017
Hierarchical statistical models

A basic random effects / Bayesian hierarchical model

Probabilistic model

\[
\begin{align*}
\alpha & \sim \text{Exp}(1) \\
\beta & \sim \text{Gamma}(0.1, 1.0) \\
\theta_i & \sim \text{Gamma}(\alpha, \beta) \\
\lambda_i & \sim \theta_i t_i \\
x_i & \sim \text{Poisson}(\lambda_i)
\end{align*}
\]
Hierarchical statistical models

A basic random effects / Bayesian hierarchical model

BUGS DSL code

```r
# priors on hyperparameters
alpha ~ dexp(1.0)
beta ~ dgamma(0.1,1.0)
for (i in 1:N){
  # latent process (random effects)
  # random effects distribution
  theta[i] ~ dgamma(alpha,beta)
  # linear predictor
  lambda[i] <- theta[i]*t[i]
  # likelihood (data model)
  x[i] ~ dpois(lambda[i])
}
```

Probabilistic model

\[
\begin{align*}
\alpha & \sim \text{Exp}(1) \\
\beta & \sim \text{Gamma}(0.1, 1.0) \\
\theta_i & \sim \text{Gamma}(\alpha, \beta) \\
\lambda_i & \sim \theta_i t_i \\
x_i & \sim \text{Poisson}(\lambda_i)
\end{align*}
\]
Divorcing model specification from algorithm

Your new method

Variational Bayes

MCEM

Quadrature

Maximum likelihood

MCMC Flavor 1

MCMC Flavor 2

Particle Filter

Importance Sampler

Flexible programming of hierarchical modeling algorithms using NIMBLE (r-nimble.org)
What can a practitioner do with hierarchical models?

Two basic software designs:

1. Typical R/Python package = Model family + 1 or more algorithms
 - GLMMs: lme4, MCMCglmm
 - GAMMMs: mgcv
 - spatial models: spBayes, INLA
What can a practitioner do with hierarchical models?

Two basic software designs:

1. Typical R/Python package = Model family + 1 or more algorithms
 - GLMMs: lme4, MCMCglmm
 - GAMMs: mgcv
 - spatial models: spBayes, INLA

2. Flexible model + black box algorithm
 - BUGS: WinBUGS, OpenBUGS, JAGS
 - PyMC
 - INLA
 - Stan
Existing software

Examples: BUGS (WinBUGS, OpenBUGS, JAGS), INLA, Stan

Widely used in various disciplines: environmental sciences, social sciences, biomedical/health sciences, statistics
NIMBLE: The Goal

Model

\[
\begin{align*}
Y(1) & \quad Y(2) & \quad Y(3) \\
X(1) & \quad X(2) & \quad X(3)
\end{align*}
\]

Algorithm language

Flexible programming of hierarchical modeling algorithms using NIMBLE (r-nimble.org)
NIMBLE philosophy

• Combine flexible model specification with flexible algorithm programming, while
 – Retaining BUGS DSL compatibility
 – Providing a variety of standard algorithms
 – **Allowing developers to add new algorithms** (including modular combination of algorithms)
 – Allowing users to operate within R
 – Providing speed via compilation to C++, with R wrappers
NIMBLE system components

1. Hierarchical model specification

 BUGS language → R/C++ model object

2. Algorithm library

 MCMC, Particle Filter/Sequential MC, MCEM, etc.

3. Algorithm programming via nimbleFunctions

 NIMBLE programming language (DSL) within R → R/C++ algorithm object
NIMBLE: programming with models

You give NIMBLE BUGS DSL code:

```
pumpCode <- nimbleCode( {
  # priors on hyperparameters
  alpha ~ dexp(1.0)
  beta ~ dgamma(0.1,1.0)
  for (i in 1:N){
    theta[i] ~ dgamma(alpha,beta)
    lambda[i] <- theta[i]*t[i]
    x[i] ~ dpois(lambda[i])
  }
}
)
```

You get a programmable model object:

```
> pumpModel$theta[1] <- 5       # set values in model
> simulate(pumpModel, 'theta') # simulate from prior
> beta_deps <- pumpModel$getDependencies('beta') # model structure
> calculate(pumpModel, beta_deps) # calculate probability density
> getLogProb(pumpModel, 'theta')
```
User experience: specializing an algorithm to a model

```r
pumpCode <- nimbleCode(
  
  alpha ~ dexp(1.0)
  beta ~ dgamma(0.1,1.0)
  for (i in 1:N){
    theta[i] ~ dgamma(alpha,beta)
    lambda[i] <- theta[i]*t[i]
    x[i] ~ dpois(lambda[i])
  }
)

sampler_slice <- nimbleFunction(
  setup = function((model, mvSaved, control) {
    calcNodes <- model$getDependencies(control$targetNode)
    discrete <- model$getNodeInfo()[[control$targetNode]]$isDiscrete()
    [...snip...]
    run = function() {
      u <- getLogProb(model, calcNodes) - rexp(1, 1)
      x0 <- model[[targetNode]]
      L <- x0 - runif(1, 0, 1) * width
      [...snip....]
  }

> pumpMCMCconf <- configureMCMC(pumpModel)
> pumpMCMCconf$printSamplers()
[1] RW sampler: alpha
[...snip...]
> pumpMCMCconf$addSampler('alpha', 'slice', list(adaptInterval = 100))
> pumpMCMCconf$removeSamplers('beta')
> pumpMCMCconf$addSampler('beta', 'slice', list(adaptInterval = 100))
> pumpMCMCconf$addMonitors('theta')
> pumpMCMC <- buildMCMC(pumpMCMCspec)
> pumpMCMC_Cpp <- compileNimble(pumpMCMC, project = pumpModel)
> pumpMCMC_Cpp$run(20000)
```

Flexible programming of hierarchical modeling algorithms using NIMBLE (r-nimble.org)
NIMBLE system components

1. Hierarchical model specification

 BUGS language \rightarrow R/C++ model object

2. Algorithm library

 MCMC, Particle Filter/Sequential MC, MCEM, etc.

3. Algorithm programming via nimbleFunctions

 NIMBLE programming language (DSL) within R \rightarrow R/C++ algorithm object
NIMBLE’s algorithm library

– MCMC samplers:
 • Conjugate, adaptive Metropolis, adaptive blocked Metropolis, slice, elliptical slice sampler, particle MCMC, specialized samplers for particular distributions (Dirichlet, CAR)
 • Flexible choice of sampler for each parameter
 • User-specified blocks of parameters

– Sequential Monte Carlo (particle filters)
 • Various flavors

– MCEM

– Write your own
NIMBLE system components

1. Hierarchical model specification

 BUGS language \(\implies\) R/C++ model object

2. Algorithm library

 MCMC, Particle Filter/Sequential MC, MCEM, etc.

3. Algorithm programming via nimbleFunctions

 NIMBLE programming language (DSL) within R \(\implies\) R/C++ algorithm object
Using nimbleFunctions for algorithms

Users can write nimbleFunctions for use with statistical models to:

• Code their own algorithms
• Create user-defined MCMC samplers for use in NIMBLE’s MCMC engine
• Write distributions and functions for use in BUGS code

nimbleFunctions that work with models have two components:

• **setup** function that is written in R and provides information to specialize an algorithm to a model
• **run** function that encodes generic execution of algorithm on arbitrary model
sampler_myMetropolis_RandomWalk <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},

run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # Various bookkeeping operations ...
})
NIMBLE: programming with models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},
run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # Various bookkeeping operations ...
})

query model structure ONCE (R code)

Flexible programming of hierarchical modeling algorithms using NIMBLE (r-nimble.org)
NIMBLE: programming with models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},
run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # Various bookkeeping operations ... #
})
Using nimbleFunctions to compile R

R code for a Markov chain

```r
mc <- function(n, rho1, rho2) {
  path <- rep(0, n)  # initialize
  path[1:2] <- rnorm(2)
  for(i in 3:n)     # propagate forward in time
    path[i] <- rho1*path[i-1] + rho2*path[i-2] + rnorm(1)
  return(path)
}
```

NIMBLE code

```r
nim_mc <- nimbleFunction(
  run = function(n = double(0), rho1 = double(0), rho2 = double(0)) {
    returnType(double(1))
    path <- numeric(n, init = FALSE)
    path[1:2] <- rnorm(2)
    for(i in 3:n)
      path[i] <- rho1*path[i-1] + rho2*path[i-2] + rnorm(1)
    return(path)
  })
```

Compile to C++ (and then to executable)

```r
cnim_mc <- compileNimble(nim_mc)
```
Using nimbleFunctions to compile R

cnim_mc<- compileNimble(nim_mc)

#g++ -l/usr/share/R/include -DNDEBUG -DEIGEN_MPL2_ONLY=1 -l"/home/paciorek/R/x86_64/3.2/nimble/include" -fpic -g -O2 -fstack-protector --param=ssp-buffer-size=4 -Wformat -Werror=format-security -D_FORTIFY_SOURCE=2 -g -c P_1_rcFun_4.cpp -o P_1_rcFun_4.o
#g++ -shared -L/usr/lib/R/lib -Wl,-Bsymb -Wl,-rpath=/home/paciorek/R/x86_64/3.2/nimble/CppCode -lR

n <- 1e6
rho1 <- .8; rho2 <- .1
set.seed(0)

system.time(path1 <- mc(n, rho1, rho2)) # original R version
user system elapsed
3.883 0.001 3.883

set.seed(0)

system.time(path2 <- cnim_mc(n, rho1, rho2)) # compiled version
user system elapsed
0.070 0.004 0.074

> identical(path1, path2)
[1] TRUE
The NIMBLE compiler (NIMBLE DSL code)

Feature summary:
• R-like matrix algebra (using Eigen library)
• R-like indexing (e.g. x[1:5,])
• Use of model variables and nodes
• Model calculate (logProb) and simulate functions
• Sequential integer iteration
• If-then-else, do-while
• Access to much of Rmath.h (e.g. distributions)
• Automatic R interface / wrapper
• Call out to your own C/C++ or back to R
• Many improvements / extensions planned
How DSL code is compiled in NIMBLE

DSL code within `nimbleFunction()`

Parse tree of code

Parse in R

Abstract syntax tree

Process in R

.Cpp and .h files in R TMPDIR

Writing to files from R

g++/llvm/etc.

Shared library in R TMPDIR

Generation of R wrapper functions that use .Call

Access via wrappers from R

Flexible programming of hierarchical modeling algorithms using NIMBLE (r-nimble.org)
Key steps in compiling R -> C++

Generate custom class definition

Evaluate setup code in R (possible for multiple cases)

Symbol table initiated from setup code results

Run function and other member functions converted to **Abstract Syntax Tree (AST).**

Partial evaluation of some functions (mostly for generic model uses).

AST transformed and annotated:
- Types inferred
- Symbol table populated
- Sizes tracked as expressions
- Resizing and size-checking calls inserted
- Intermediate variables inserted
- Labeling for Eigen compatibility
- Insertion of Eigen matrix / map setup

Creation of object to manage C++ function/class content.
- Also creates AST for C function for .C()
- Includes generic void* system to access any member data easily from R.

Write .cpp and .h files and compile them

Generate class definition to **access function or object(s) of compiled code**
- creates natural R calls
- allows natural access to C++ member data

nf <- nimbleFunction(...)
Compilation steps

(a) Original NIMBLE code: $Y \leftarrow \text{foo}(A \ b + c)$ ## %**% is matrix multiplication in R

(b) Create Abstract Syntax Tree (AST)

(c): Label types at every AST vertex (not shown)

(d). Add Y to symbol table if needed

(e). Label for Eigen and transform as needed

(f). Add Temp1 and necessary Eigen variables to symbol table.

(g) Final C++

double Y;
NimbleArray<2, double> Temp1;
EigenMap Eig_Temp1, Eig_A, Eig_b, Eig_c;
// pointer and resizing details omitted
Temp1 = (Eig_A * Eig_b).array() + Eig_c;
Y = foo(Temp1);

Future
Annotate and transform AST for
- distributed processing
- automatic differentiation
Basic example: calls from R

> nim_mc
function (n, rho1, rho2)
{
 path <- nimNumeric(n, init = FALSE)
 path[1] <- rnorm(1)
 path[2] <- rnorm(1)
 for (i in 3:n) path[i] <- rho1 * path[i - 1] + rho2 * path[i - 2] + rnorm(1)
 return(path)
}

> cnim_mc
function (n, rho1, rho2)
{
 if (is.null(CnativeSymbolInfo_)) {
 warning("Trying to call compiled nimbleFunction that does not exist (may have been cleared.).")
 return(NULL)
 }
 ans <- .Call(CnativeSymbolInfo_, n, rho1, rho2)
 ans <- ans[[4]]
 ans
}
Basic example: generated C++ code

NimArr<1, double> rcFun_2 (double ARG1_n_, double ARG2_rho1_, double ARG3_rho2_) {
 NimArr<1, double> path;
 double i;
 path.initialize(0, false, true, true, ARG1_n_);
 path[0] = rnorm(0, 1);
 path[1] = rnorm(0, 1);
 for(i=3; i<= static_cast<int>(ARG1_n_); ++i) {
 path[(i) - 1] = (ARG2_rho1_ * path[(i - 1) - 1] + ARG3_rho2_ * path[(i - 2) - 1]) + rnorm(0, 1);
 }
 return(path);
}

SEXP CALL_rcFun_4 (SEXP S_ARG1_n_, SEXP S_ARG2_rho1_, SEXP S_ARG3_rho2_) {
 // ...
}
Basic example using Eigen for vectorization

Uncompiled nimbleFunction (DSL) code

element_vec <- nimbleFunction(
 run = function(x = double(1)) {
 returnType(double(1))
 out <- acos(tanh(x))
 return(out)
 })

Compiled C++ code

NimArr<1, double> rcFun_5 (NimArr<1, double> & ARG1_x_) {
 NimArr<1, double> out;
 Map<MatrixXd> Eig_out(0,0,0);
 EigenMapStr Eig_ARG1_x_INTERM_1(0,0,0, EigStrDyn(0, 0));
 out.setSize(ARG1_x_.dim()[0]);
 new (&Eig_out) Map< MatrixXd >(out.getPtr(),ARG1_x_.dim()[0],1);
 new (&Eig_ARG1_x_INTERM_1) EigenMapStr(ARG1_x_.getPtr() +
 static_cast<int>(ARG1_x_.getOffset() + static_cast<int>(0)),ARG1_x_.dim()[0],1,EigStrDyn(0,
 ARG1_x_.strides()[0]));
 Eig_out = (((Eig_ARG1_x_INTERM_1).array()).unaryExpr(std::ptr_fun<double, double>(tanh))).acos();
 return(out);
}
Compiler extensibility

• Compiler is written in R with extensibility in mind.

• Adding new functions requires/allows:
 – Possible syntax modification
 – A function to annotate AST with appropriate sizes and types (can be an existing function or a new one)
 – Determination of C++ output format
 – Other details

• Adding new types is more involved.

• Goal is to automate /isolate some extensibility steps.
Goals for extending NIMBLE

• Advanced math
 – Automatic differentiation (generate code to use existing C++ CppAD library): well underway
 – More linear algebra (sparsity and more)

• Advanced computing
 – Parallelization via compilation to Tensorflow (in place of Eigen): initial steps done
 – More modular compilation units
 – More native use of R objects in C++ (less copying)

• Scalability
 – Faster R processing of model and algorithm code
 – Vectorization of algorithms for replicated model nodes

• More algorithms
Interested?

• Version 0.6-6 on R package repository (CRAN)
• Lots of information (manual, examples, etc.) on r-nimble.org
• Development: github.com/nimble-dev/nimble
• Announcements: nimble-announce Google site
• User support/discussion: nimble-users Google site