The Consequences of Infinite Storage Bandwidth

Allen Samuels
Engineering Fellow, Systems and Software

October 5, 2017
Disclaimer

During the presentation today, we may make forward-looking statements.

Any statement that refers to expectations, projections, or other characterizations of future events or circumstances is a forward-looking statement, including those relating to industry predictions and trends, future products and their projected availability, and evolution of product capacities. Actual results may differ materially from those expressed in these forward-looking statements due to a number of risks and uncertainties, including among others: industry predictions may not occur as expected, products may not become available as expected, and products may not evolve as expected; and the factors detailed under the caption “Risk Factors” and elsewhere in the documents we file from time to time with the SEC, including, but not limited to, our annual report on Form 10-K for the year ended January 3, 2016. This presentation contains information from third parties, which reflect their projections as of the date of issuance. We undertake no obligation to update these forward-looking statements, which speak only as of the date hereof or the date of issuance by a third party.
What do I Mean By Infinite Bandwidth?
Log scale

- Use DRAM Bandwidth as a proxy for CPU throughput
- Reasonable approximation for DMA heavy, and/or poor cache hit performance workloads (e.g. Storage)
Linear scale

- Same data as last slide, but for the Log-impaired
- Storage Bandwidth is not literally infinite
- But the ratio of Network and Storage to CPU throughput is widening very quickly
Data is for informational purposes only and may contain errors.
Data is for informational purposes only and may contain errors.
What happens as we get closer to the limit?
Let’s Get Small!

- New Denser Server Form Factors
 - Blades
 - Sleds

- Good short term solutions
Effects Of The CPU/DRAM Bottleneck

- Storage Cost = Media + Access + Management
- Shared nothing architecture conflates access and management
- Storage costs will become dominated by Management cost
- Storage costs become CPU/DRAM costs
Embracing The CPU/DRAM Bottleneck

- Move management to upper layers where CPU can be right-sized by client
- What kind of media access do I want?
 - Simple enough functionality to be done directly in drive hardware – NO CPU
 - Allow direct access throughout the compute cluster over a network
 - Just enough machinery to enable coarse-grained sharing

- In short, you really want a SAN!
 - Or more technically, Fabric Connected Storage
Not Your Father’s SAN

- Three problems with current SAN
 - Fibre channel transport
 - SCSI access protocol
 - Drive oriented storage allocation

- All of these want to be updated
 - Fibre channel is brittle and costly
 - SCSI initiators have long code paths catering to seldom used configurations
 - Robust sub-drive storage allocation
SAN 2.0

- NVMe over Fabrics
- 1.0 Spec is out for review, hopefully done in May
- Simple enough for direct hardware execution of data path ops
- Minimal initiator code path lengths improve performance
- Namespaces allow sub-drive allocations
- Not mature enough for enterprise deployment – yet
SAN 2.0

- What storage network?
 - Current candidates are FC, Infiniband and Ethernet
- Ethernet has best economics – if you can make it work
- RoCE is easy on the edge, but hard on the interior
 - Only controlled environments have shown multi-switch scalability
 - General scalability in a multi-vendor environment likely to be difficult
 - Wonderful for intra-rack storage networking
- iWarp is hard on the edge, but easy on the interior
 - Scarcity of implementations inhibits deployment
- *Storage over IP will see limited cross rack deployment until this is resolved*
First Generation Of SAN 2.0

- Implementations using OTS stuff are in progress
- Server side implementations look pretty conventional too
- 4-5 MIOPS have been shown
- Seems like 10 MIOPS isn’t unreasonable to expect
Second Generation SAN 2.0

- Soon, NICs will forward NVMe operations to local PCIe devices
- CPU removed from the *software* part of the data path
- CPU is still needed for the *hardware* part of the data path
- IOPS improve, BW is unchanged
- Significant CPU freed for application processing
- *Getting closer to the wall!*
Third Generation SAN 2.0, Imagined

- New generation of combined SSD controller and NIC
 - Rethink of interfaces eliminates DRAM buffering
- Network goes right into the drive
- No CPU to be found
- Works well with rack scale architecture
Let’s Get Really Small

- Disaggregated / Rack Scale Architecture
 - Fabric connected
 - Independently scale compute, networking and storage
Call To Action

- Fabric-connected storage isn’t well managed by existing FOSS
- Lots of upper layer management software is available
 - OpenStack, Ceph, Gluster, Cassandra, MongoDB, SheepDog, etc.
- Lower layer cluster management still primitive
What’s It All Mean?

- New form factors are in everybody's future
- The coming avalanche of storage bandwidth wants to be free
 - Not imprisoned by a CPU
- Rack Scale Architecture allows new Storage/Compute configs
- Storage will be increasingly “Software Defined” as the HW evolves